Deriving the VAE Loss Function

https://learnopencv.com/variational-autoencoder-in-tensorflow/#vae-loss

Encoder ~ (Φ = weights,bias)

- Inputs X → Outputs the (mean and sd) of an approximate posterior distribution q(Z|X) = N(mean,sd) (variational inference needed) Because true distribution p(Z|X) is very complex
 - a. Usually p(Z|X) = bayes theorem $\rightarrow p(X|Z)p(Z) / p(X)$
 - b. The denominator p(X) aka probability of observing datapoint is usually calculated by integrating $\int p(x|z)p(z)dz$ but this TAKES A LONG TIME bc integral evaluates over all possible configurations of z

Sampling ~ (z)

- 1. Sample from normal approximation of q(Z|X)
- 2. Reparameterization Trick:
 - a. Direct sampling of q(Z|X) is not differentiable (can't compute gradients for backprop) since we draw from a probability distribution , aka it's no longer deterministic.
 - b. So instead, we separate the sampling step from the fixed parameters of the distribution by introducing a simple and fixed random variable $\varepsilon \sim N(0, 1)$. We then use ε to transform into samples from the desired distribution. This transformation is differentiable, allowing us to compute gradients through it.
 - c. So instead, we sample from a simple and fixed distribution, and then apply a transformation to map samples to the desired distribution Q(Z|X).
 - d. $Z = \mu(X) + \sigma(X) * \varepsilon$
- 3. Now, ε is drawn from a fixed distribution (standard normal), and we can compute gradients through the transformation step.

Decoder ~ (Θ = weights,bias)

1. Samples points from the latent space and tries to reconstruct original data from it.

Deriving the Loss Function Which Updates Encoder and Decoder

ELBO = (- VAE loss)

- Either minimize the VAE Loss
 VAE Loss = (- log likelihood) + KL Divergence between P(z|x) and Q(z|x)
- 2. Or maximize ELBO
 - a. ELBO = E[log p(x|z)] KL[q(z|x) || p(z)] *instead of p(x|z) which is intractable
 - b. $E[\log p(x|z)] = \log likelihood$

We want to maximize Log Likelihood (likelihood of observing $x \mid z$)

KL Divergence

$$\mathbb{KL}(q_\lambda(z \mid x) \mid\mid p(z \mid x)) =$$

 $\mathbf{E}_q[\log q_\lambda(z\mid x)] - \mathbf{E}_q[\log p(x,z)] + \log p(x)$

- 1. We want to minimize this KL difference between approx distributions q(z|x) and true p(z|x) but lol fuck look what we see p(x) again which is nondifferentiable
- 2. So then we introduce ELBO... things cancel out and we can get p(x) on one side

$$ELBO(\lambda) = \mathbf{E}_q[\log p(x,z)] - \mathbf{E}_q[\log q_\lambda(z\mid x)].$$

Notice that we can combine this with the Kullback-Leibler divergence and rewrite the evidence as

$$\log p(x) = ELBO(\lambda) + \mathbb{KL}(q_{\lambda}(z \mid x) \mid\mid p(z \mid x))$$

By Jensen's inequality

- Which states for a convex function f(x), the following inequality holds: E[f(x)] >= f(E[x])
- So this means the KLD >= 0 , and then minimizing KL means maximizing ELBO

Maximizing ELBO = minimizing (-) ELBO = minimizing (-) log-likelihood + KLD over models parameters

AKA, all we need to do is MAXIMIZE ELBO

 $ELBO_i(\lambda) = \mathbb{E}q_\lambda(z \mid x_i)[\log p(x_i \mid z)] - \mathbb{KL}(q_\lambda(z \mid x_i) \mid\mid p(z)).$

Find encoder - decoder parameters to maximize ELBO)

- 3. Get weights and biases of encoder params with q(z|x)
- 4. And weights and biases of decoder params with p(x|z)

and include the inference and generative network parameters as:

$$ELBO_i(heta,\phi) = \mathbb{E}q_ heta(z \mid x_i)[\log p_\phi(x_i \mid z)] - \mathbb{KL}(q_ heta(z \mid x_i) \mid\mid p(z)))$$

Summary:

- p(z|x) = "posterior", given data → construct latent space z [Encoder]
 q(z|x) = approximated posterior
 p(z) = "prior" we assume N(0,1)
 p(x|z) = likelihood, given z → reconstruct data [Decoder]
- 1. Given joint model p(x,z) = p(x|z) p(z)
- 2. We want to encode true posterior p(z|x)
 - a. p(z|x) = bayes theorem but denominator is intractable
 - b. Approximate p(z|x) with q(z|x) where $q \sim N(0,1)$
 - c. Measure KLD [q(z|x) || p(z|x)] \rightarrow again p(z|x) is intractable
- 3. ELBO: Gives a good q(z|x)
 - a. log p(x) = ELBO + KLD [q(z|x) || p(z|x)]
 - b. Jensens Inequality allows us to rearrange and maximize ELBO
 - c. ELBO = p(x|z) KLD [q(z|x) || p(z)]