
Deriving the VAE Loss Function
https://learnopencv.com/variational-autoencoder-in-tensorflow/#vae-loss

Encoder ~ (Ф = weights,bias)
1. Inputs X → Outputs the (mean and sd) of an approximate posterior distribution q(Z|X) =

N(mean,sd) (variational inference needed) Because true distribution p(Z|X) is very
complex

a. Usually p(Z|X) = bayes theorem → p(X|Z)p(Z) / p(X)
b. The denominator p(X) aka probability of observing datapoint is usually calculated

by integrating ∫ p(x∣z)p(z)dz but this TAKES A LONG TIME bc integral
evaluates over all possible configurations of z

Sampling ~ (z)
1. Sample from normal approximation of q(Z|X)
2. Reparameterization Trick:

a. Direct sampling of q(Z|X) is not differentiable (can’t compute gradients for
backprop) since we draw from a probability distribution , aka it’s no longer
deterministic.

b. So instead, we separate the sampling step from the fixed parameters of the
distribution by introducing a simple and fixed random variable ε ~ N(0, 1). We
then use ε to transform into samples from the desired distribution. This
transformation is differentiable, allowing us to compute gradients through it.

c. So instead, we sample from a simple and fixed distribution, and then apply a
transformation to map samples to the desired distribution Q(Z|X).

d. Z = μ(X) + σ(X) * ε
3. Now, ε is drawn from a fixed distribution (standard normal), and we can compute

gradients through the transformation step.

Decoder ~ (Ө = weights,bias)
1. Samples points from the latent space and tries to reconstruct original data from it.

Deriving the Loss Function Which Updates Encoder and Decoder
ELBO = (- VAE loss)

1. Either minimize the VAE Loss
VAE Loss = (- log likelihood) + KL Divergence between P(z|x) and Q(z|x)

2. Or maximize ELBO
a. ELBO = E[log p(x|z)] - KL[q(z|x) || p(z)] *instead of p(x|z) which is intractable

b. E[log p(x|z)] = log likelihood

We want to maximize Log Likelihood (likelihood of observing x | z)

https://learnopencv.com/variational-autoencoder-in-tensorflow/#vae-loss


KL Divergence

1. We want to minimize this KL difference between approx distributions q(z|x) and
true p(z|x) but lol fuck look what we see …. p(x) again which is nondifferentiable

2. So then we introduce ELBO… things cancel out and we can get p(x) on one side

By Jensen’s inequality
● Which states for a convex function f(x), the following inequality holds: E[f(x)] >=

f(E[x])
● So this means the KLD >= 0 , and then minimizing KL means maximizing ELBO

Maximizing ELBO = minimizing (-) ELBO = minimizing (-) log-likelihood + KLD over
models parameters

AKA, all we need to do is MAXIMIZE ELBO

Find encoder - decoder parameters to maximize ELBO)
3. Get weights and biases of encoder params with q(z|x)
4. And weights and biases of decoder params with p(x|z)



Summary:
- p(z|x) = “posterior”, given data → construct latent space z [Encoder]

q(z|x) = approximated posterior
p(z) = “prior” we assume N(0,1)
p(x|z) = likelihood, given z → reconstruct data [Decoder]

1. Given joint model p(x,z) = p(x|z) p(z)
2. We want to encode true posterior p(z|x)

a. p(z|x) = bayes theorem but denominator is intractable
b. Approximate p(z|x) with q(z|x) where q ~ N(0,1)
c. Measure KLD [ q(z|x) || p(z|x) ] → again p(z|x) is intractable

3. ELBO: Gives a good q(z|x)
a. log p(x) = ELBO + KLD [ q(z|x) || p(z|x) ]
b. Jensens Inequality allows us to rearrange and maximize ELBO
c. ELBO = p(x|z) - KLD [ q(z|x) || p(z) ]


